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Abstract

A wind tunnel experiment for characterizing the

aerodynamic and propulsion forces and moments

acting on a research model airplane is described. The

model airplane, called the Free-flying Airplane for
Sub-scale Experimental Research (FASER), is a
modified off-the-shelf radio-controlled model

airplane, with 7 ft wingspan, a tractor propeller

driven by an electric motor, and aerobatic capability.
FASER was tested in the NASA Langley 12-foot

Low-Speed Wind Tunnel. using a combination of

traditional sweeps and modem experiment design.
Power level was included as an independent variable

in the wind tunnel test, to allow characterization of

power effects on aerodynamic forces and moments.

A modeling technique that employs multivariate

orthogonal functions was used to develop accurate

analytic models for the aerodynamic and propulsion
force and moment coefficient dependencies from the

wind tunnel data. Efficient methods for generating

orthogonal modeling functions, expanding the

orthogonal modeling functions in terms of ordinary

polynomial functions, and analytical orthogonal

blocking were developed and discussed. The

resulting models comprise a set of smooth,
differentiable functions for the non-dimensional

aerodynamic force and moment coefficients in terms
of ordinary polynomials in the independent variables,
suitable for nonlinear aircraft simulation.
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Nomenclature

parameter vector

lift, drag, and side force coefficients

rolling moment coefficient

pitching moment coefficient

yawing moment coefficient

covariance matrix

cost function

Modem Design Of Experiments

number of model terms

total number of data points

One Factor At a Time

predicted squared error

power level, percent

modeling function vector

thrust force, Ibf

independent variable vector

measured output vector

angle of attack, deg

sideslip angle, deg

aileron deflection, deg

elevator deflection, deg

flap deflection, deg

rudder deflection, deg

variance

ordinary polynomial function vector

transpose

estimate

matrix inverse

normalized
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subscripts

max maximum

min minimum

o nominal

Introduction

Modem aeronautical research involves expanded

flight envelopes, as a result of the desire for improved

fighter maneuverability for tactical advantages, and the

desire to improve flight safety. The expanded flight

envelopes involve nonlinear aerodynamics which must

be modeled accurately.

Since nonlinear aerodynamics are much more

complex than linear aerodynamics, more sophisticated

experimentation is required to accurately characterize

the functional dependencies. Nonlinear aerodynamics

violate linear modeling assumptions such as

superposition, quasi-steady flow, and no

interdependence of the effects of states and controls. In

addition, aircraft designs have evolved with increasing
numbers of control effectors. Traditional wind tunnel

testing methods would set each control effector to

different fixed levels while sweeping through angle of

attack and sideslip angle, for example. With such an

approach, the number of data points required increases

exponentially with the number of control effectors, if
information on control surface interaction effects is

desired. These considerations highlight the need to

develop more efficient wind tunnel testing and

modeling techniques to accurately characterize

nonlinear aerodynamics, with possible interaction

effects among a large number of independent variables.

At NASA Langley, the Free-flying Airplane for

Sub-scale Experimental Research (FASER) is being

developed to study problems such as that described
above. FASER is a modified off-the-shelf radio control

model called the Ultra-Stick, manufactured by Hangar

9, Ltd., see Figure 1. FASER has a conventional high-

wing and tail configuration with 7 ft wingspan, a

foldable tractor propeller driven by an electric motor,

and acrobatic capability.

The purpose of FASER is to provide an

inexpensive aircraft for developing and demonstrating

advanced experiment design, data analysis and

modeling techniques, and control law design methods.

As long as the goal is technology demonstration or
basic research, a sub-scale model that is not

dynamically scaled for a specific full-scale aircraft is a

completely acceptable test vehicle for these purposes.

FASER was designed so that the flight vehicle

could be installed in the wind tunnel, see Figure 1.

This avoids any Reynolds number or scaling effects,
and ensures that there are no physical differences

between the wind tunnel model and the flight vehicle.

In contrast, full scale flight tests and drop model

tests are expensive and are sometimes separated by
months (and even years) for a particular research

activity. The number of these tests is always tightly
constrained by budget. There is also a substantial
difference in the cost of overhead if the aircraft is to be

kept in flyable condition. Since FASER is inexpensive
and unmanned, risks can be taken in research and

development that could never be tolerated in a piloted

flight test or even in a drop model test. Advances in

instrumentation now make it possible to instrument a

sub-scale model aircraft with research-quality,
miniaturized flight test instrumentation at a reasonable
cost.

This paper describes the experiment design, data

analysis, and mathematical modeling involved in
developing a wind tunnel database for the FASER

aircraft. Accuracy of this database is critical for the

development of a high-fidelity nonlinear simulation to

be used for control law design, flight envelope

expansion, flight experiment design, and pilot training.
A preliminary version of the nonlinear simulation for

FASER has already been developed, using U.S. Air

Force DATCOM to generate an aerodynamic model,
with experimentally-determined values for the mass
and inertia characteristics of FASER 1. The work

described in this paper will upgrade the aerodynamic

model with analytic models derived from wind tunnel
data, add an engine thrust model, and include

propulsion effects on the aerodynamics. Since FASER

was intended to be a research vehicle from the outset,

the approach used for the experiment design and data

analysis for the wind tunnel testing was not traditional.

This paper explains how the wind tunnel testing was

done, and examines the results. The paper also

describes a method for generating orthogonal modeling

functions based on the independent variable data, along

subsequent expansion of the orthogonal modeling
functions in terms of ordinary multivariate

polynomials. This method is slightly different from

that described in Refs. [2] and [3], and represents an

evolutionary improvement of the technique. In Ref.

[2], the concept of response surface modeling using

multivariate orthogonal functions was successfully

applied to inference subspaces for limited ranges of

angle of attack and Mach number with fixed sideslip
angle and control surface deflections. This paper
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extends the multivariate orthogonal function modeling

concept to identify aerodynamic models for a large

flight envelope, with more independent variables.

Experiment Design

For this wind tunnel test, the fundamental

objective was to find a mathematical description for the

dependence of non-dimensional aerodynamic force and

moment coefficients on independent variables that are

varied during the experiment. Each mathematical
description or model can be thought of geometrically as

a hyper-surface, also called a response surface. Critical

issues for successfully identifying an adequate response

surface model from experimental data include the

experiment design (or, how the independent variable

values are set when measuring the output responses),

noise level on the measured outputs, identification of a

mathematical model structure that can capture the

functional dependence of the output variables on the

independent variables, accurate estimates of unknown

parameters in the identified model structure, and the

ability of the identified model to predict outputs for

data that was not used to identify the response surface
model.

The experiment design used for FASER wind

tunnel testing was a hybrid design broken down into a
series of procedures. The procedures are listed in

Table 1. Randomization 4-6 was used throughout the

testing, to separate independent variable effects from

time-dependent systematic errors.

The first procedure consisted of randomized

engine power sweeps with the wind tunnel air off, to
determine the static thrust from the electric motor and

the propeller. All of these runs were made with the

model at zero angle of attack and zero sideslip angle, so
that the thrust measurement was obtained from the

longitudinal force measured by the balance mounted in

the model, Figure 2 shows the static thrust plotted as a

function of pulses per second from a Hall effect

transducer on the electric motor, which is proportional

to the propeller RPM. The model shown in Figure 2 is

the result of a simple least squares fit of thrust to pulse

count, using a quadratic model structure. This model

structure was identified automatically from the data,

using the orthogonal function modeling technique
described later.

In the second and third procedures, the approach

was to use One Factor At a Time (OFAT) sweeps,
wherein one independent variable is changed with all

others held constant, to characterize the general

topology of the response surfaces for the

nt;n-dimensional coefficients, get an idea of the

response levels, collect basic static stability and trim
infbrmation, and define the boundaries of the

independent variable subspaces to be used for further

experimentation. OFAT sweeps were used because the

data acquisition system in the NASA Langley 12-foot

Low-Speed Wind Tunnel is set up to collect OFAT data

in an automated fashion, making the sweeps very

efficient in terms of collecting data points in minimum

time. However, the initial OFAT sweeps are really

only intended for qualitative use, namely to define the

b_,tmdaries for subspaces that will be the focus of

detailed experimentation and modeling in procedure

four. One advantage of operating in this manner is that

any issues related to instrumentation, data collection, or

experimental procedures can be worked out during the

OFAT sweeps without impact on the experiment.

because the data from the OFAT sweeps is being used

for qualitative purposes only. This approach also

provides a good rough overview of the landscape' that

characterizes the dependence of force and moment

coefficients on the independent variables.

The independent variables for the FASER wind

ttmnel test were angle of attack a, sideslip angle ft,

p_)wer level pwr, elevator deflection 8e , aileron

deflection _a, rudder deflection _r, and flap

deflection _y-. The response variables were

n_n-dimensional aerodynamic coefficients for lift, drag,

a:ld side forces (Cz,CD, andCy), and rolling,

pitching, and yawing moments (CI.C m, and Cn).

Each data point produced measured values for all

independent and response variables.

The experiment was designed assuming an), of the

independent variables could influence any of the

response variables. It was assumed (as an initial guess

oaly) that the dependencies could be modeled

accurately with polynomial terms in the independent

variables of order 3 or less within each independent

variable subspace. In addition, it was assumed that

14mgitudinal controls ( 8e , _f. and pwr) do not interact

with lateral/directional controls (t_ a and 8 r ). In

practical terms, this meant that longitudinal and
lateral/directional controls were not varied

simultaneously to allow their mutual interaction effects

to be quantified. As a result, the subspaces were called

"longitudinal" if the longitudinal controls were moved,
and "lateral/directional" if the lateral/directional

controls were moved.

Based on experience with similar airplanes, it was

l,nown that the dependence of non-dimensional
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aerodynamic force and moment coefficients on control
surface deflections could be modeled with low order

polynomials for the entire range of control surface

deflections. With that assumption, it was not necessary

to vary the control surface deflections to search for

inference subspace boundaries along the dimensions of

the independent variable space corresponding to control

surface deflections. Inference subspace boundaries

were therefore sought only for _ fl, and pwr. These

independent variables were varied using OFAT sweeps

to identify the inference subspace boundaries.

Figure 3 shows an OFAT sweep on angle of

attack. The vertical lines mark the selected subspace
boundaries in angle of attack, which are intended to

mark the boundaries of regions where the character of

the response surfaces change. There is a trade-off in

selecting the subspace boundaries, in that more

subspaces mean more individual experimentation

regions in procedure four, while fewer subspaces

generally require more resources in the data collection

and modeling for each subspace. Figures 4 and 5 show

OFAT sweeps on sideslip angle and power level, with
the selected subspace boundaries marked by vertical
lines. All control surface deflections were zero for the

sweeps shown in Figures 3-5.

The full independent variable ranges tested are

listed in Table 2. Tables 3 and 4, and corresponding

Figures 6, 7, and 8, show the definitions of the

inference subspaces in terms of boundary values of

angle of attack, sideslip angle, and power level. The

symmet D, of the vehicle was used to justify omitting

testing in most of the subspaces with high negative

sideslip angles, see Figures 6, 7, and 8. All the

subspaces together comprised the full inference space,

defined by the full range of the independent variables in
Table 2. All control surfaces were tested over their full

physical deflection ranges for each subspace.

In the fourth and final procedure, Modem Design

Of Experiment (MDOE) techniques 4-6 were applied to

each defined subspace in order to obtain the most

accurate and complete characterization of the functional
dependencies, and also to make sure all interaction

effects were adequately modeled. Refs. [2], [4]-[6]

describe and demonstrate in detail the advantages of the

MDOE approach compared to traditional OFAT for

detailed modeling of the functional dependencies, both

in terms of the modeling accuracy and in the economy
of experimentation resources required to arrive at an

acceptable result.

Within each subspace, independent variables were

set according to normalized values. Normalized

independent variable values are found by mapping the

independent variable values in engineering units for

each subspace onto the interval [-1,1]. The

normalization of each independent variable was

implemented by

X -- Xmm )

"r =-1+ 2 (xmax -Xmin )
(1)

where _ was the normalized value of the independent

variable, and the independent variable range in

engineering units was [xmi,,Xm_ ]. The inverse

transformation was

(J+l)
X = Xmin +T( Xmax --Xmi,1) (2)

All modeling for the inference subspaces was

done using normalized values of the independent

variables. The fmal models used for prediction were

written in terms of engineering units.

Second-order central composite design 5,6 in four

independent variables (for the power-off subspaces) or
five independent variables (for the power-on

subspaces) was used in each subspace, augmented with

a 3ra order D-optimal design 5,6 in the appropriate

number of independent variables. A two-dimensional

projection of this constellation of data points in

normalized independent variable space is shown in

Figure 9. The central composite design points occupy
the comers, the centers of each face, and the center of

the normalized subspace, while the D-optimal points

generally fill in between. Although some of the

D-optimal points are coincident with the central
composite design points, the number of times that this

happens is not represented accurately in Figure 9,

because of the projection onto two dimensions. This
experiment design enabled identification of up to 3 ra

order functional dependencies and interaction effects.

Provisions were made to augment the designed

experiment if the data indicated a lack of fit that
required modeling functions with higher than 3_aorder.

Instrumentation and Data Collection

FASER was used as the wind tunnel model and

tested at a nominal flight speed, thus avoiding scaling,

Reynolds number, or geometric dissimilarity issues for

comparisons with future flight test data. All control

surfaces were instrumented with potentiometers. Air
data vanes and airspeed pinwheels were installed on
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booms attached at each wing tip and extending 1 chord

length in front of the wing. The air data sensors, which
will be used for flight testing, were calibrated as part of

the wind tunnel experiment, since aerodynamic

incidence angles and airspeed were carefully controlled
and measured in the wind tunnel. The wind tunnel

balance was installed near the e.g. of the airplane in the

space normally occupied by the accelerometer and rate

gyro package during flight test operations.

Control surface deflections and power level were

automatically set to the values required by the

experiment design via a serial port interface from a

laptop computer in the control room to a
servomechanism controller onboard on the airplane.

The same onboard equipment will be used to command
the control surfaces and power level during flight

operations. Angle of attack and sideslip angle were set
from the control room using servomechanisms driving

the movable C-strut in the test section. The angle of

attack and sideslip angles were set automatically during

OFAT sweeps, but had to be set manually for the

MDOE data points, using joystick controllers and a
measurement feedback to the control room. Dynamic

pressure in the tunnel was regulated to 2 psf by an

automatic closed loop control on the wind tunnel fan

motor speed.

The experimental set-up was designed to
accommodate the MDOE approach, which typically

requires changes in more than one independent variable

for successive data points. Since the control surface

and power level settings were automated using the

laptop computer, each data point required only manual

setting of angle of attack and sideslip angle using the

joysticks in the control room. Each data point was

taken as the average of a ten-second dwell using a

sampling rate of 100 Hz.

The data for power-on subspaces was collected by

interleaving power-on points with power-off points
from other subspaces, in order to keep the engine

temperature at low levels for extended testing periods.
This was necessary to avoid damage to the electric

motor. A regulated DC power supply was used to

power the electric motor, so that batteries would not
have to be swapped in and out. The power-on

subspaces were limited to relatively low angle of attack
and sideslip angle (see Figure 7), because of excessive

vibration of the wind tunnel rig and model for powered

runs at high angles of attack and/or high sideslip

angles.

The wind tunnel experiment described above was

conducted over 4 weeks in May 2002, in the NASA

Langley 12-foot Low-Speed Wind Tunnel.

Modeling,

Typically, once the experimental data are

collected, polynomials in the independent variables are
used to model the functional dependence of the output

variables on the independent variables, and the model

parameters are estimated from the measured data using

least squares linear regression 5,6. The question of

which polynomial terms should be included in the

model for a given set of data, called model structure

determination, gets more difficult with increases in the

number of independent variables, increased ranges for

the independent variables, or increased complexity of

the underlying functional dependency.

Various hypothesis testing techniques 6,7 can be

used to identify an adequate model structure, but these
methods are iterative and require the involvement of an

experienced analyst. Neural networks using radial
basis functions with subspace partitioning, or back

propagation with layered and interconnected nonlinear
activation functions, have also been applied to the

response surface modeling problem 8. For this type of

approach, there is a loss of physical insight and a

danger of over-fitting the data, because the model

structures contain many parameters, typically with no

mechanism for limiting the size of the model other than

the judgment of the analyst.

In this work, a nonlinear multivariate orthogonal

modeling technique 2,3 was used to model response

surfaces from wind tunnel data. The technique

generates nonlinear orthogonal modeling functions

from the independent variable data, and uses those

modeling functions with a predicted squared error

metric to determine appropriate model structure. The

orthogonal functions are generated in a manner that

allows them to be decomposed without ambiguity into

an expansion of ordinary multivariate polynomials.

This allows the identified orthogonal function model to
bc converted to a multivariate ordinary polynomial

expansion in the independent variables, which provides

physical insight into the identified functional

dependencies.

The next section briefly describes the multivariate

orthogonal function modeling approach. In the Results

section, the multivariate orthogonal function modeling

method is applied to identify response surface models

fi,r non-dimensional aerodynamic force and moment

coefficients for inference subspaces, based on data
from the FASER wind tunnel test.

5

American Institute of Aeronautics and Astronautics



Multivariate Orthogonal Functions

Assume an N-dimensional vector of response

variable values, y = [Yl ,Y2 ..... YN ]r, modeled in terms

of a linear combination of n modeling functions

p j, j = 1,2 ..... n. Each pj is an N-dimensional vector

which in general depends on the independent variables.
Then.

Y = al Pl +a2 P2 + .,. + an Pn +£ (3)

The as , j = 1,2 ..... n are constant model parameters to

be determined, and _ denotes the modeling error vector.
Eq. (3) represents the usual mathematical model used to

fit a response surface to measured data from an

experiment. We put aside for the moment the

important questions of determining how candidate

modeling functions Ps should be computed from the

independent variables, as well as which candidate

modeling functions should be included in Eq. (3),
which implicitly determines n. Now define an Nxn

matrix P,

P = [t_, P2 ..... Pn ] (4)

and let a =[al,a 2 ..... an] T. Eq. (3) can be written as a

standard least squares regression problem,

y =Pa+e (5)

where y is a vector of measured dependent variable

values, P is a matrix whose columns contain modeling

functions of the measured independent variables, and a

is a vector of unknown parameters. The variable

represents a vector of errors that are to be minimized in

a least squares sense. The goal is to determine a that

minimizes the least squares cost function

d = (y -Pa) T (y -Pa)=cTe (6)

The parameter vector estimate that minimizes this cost

fimction is computed from 3,5-7

it =IP T P1-1 pT y (7)

The estimated parameter covariance matrix is

where E is the expectation operator, and the error

variance o -2 can be estimated from the residuals,

v = y - Pti (9)

_2_ 1 Pd)]- vWv(N-n) [(y_pd:)T (y_ (N-n) (I0)

and n is the number of elements in parameter vector a.

Parameter standard errors are computed as the square

root of the diagonal elements of the Coy(d) matrix

from Eq. (8), using 6 -2 from Eq. (10).

Estimated model output is

)=P_i (11)

For response surface modeling, the modeling

functions (columns of P) are often chosen as

polynomials in the measured independent variables.

This approach corresponds to using the terms of a

Taylor series expansion to approximate the functional

dependence of the output response variable on the

independent variables.

If the modeling functions are instead multivariate

orthogonal functions generated from the measured

independent variable data, advantages accrue in the

model structure determination for response surface

modeling. After the model structure is determined

using the multivariate orthogonal modeling functions,

each retained modeling function can be decomposed

into an expansion of ordinary polynomials in the

independent variables. Combining like terms from this

final step puts the final model in the form of a Taylor
series expansion. It is this latter form of the model that

provides the physical insight, particularly in the case of

modeling non-dimensional aerodynamic force and
moment coefficients. This is the reason that aircraft

dynamics and control analyses are nearly always

conducted with the assumption of this form for the

dependence of the non-dimensional aerodynamic force

and moment coefficients on independent variables such

as angle of attack and sideslip angle.

Ref. [3] describes a procedure for using the
independent variable data to generate multivariate
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orthogonal modeling functions pj, which have the

following important property:

p,lpj = 0 i_j, i,j =1, 2 ..... n (12)

It is also possible to generate multivariate

orthogonal functions by first generating ordinary

multivariate polynomials in the independent variables,

then orthogonalizing these functions using

Gram-Schmidt orthogonalization. The process begins

by choosing one of the ordinary multivariate

polynomial functions as the first orthogonal function:

p_=_ (13)

where 41 is the ordinary multivariate polynomial

function chosen to be the first orthogonal function.

Then to make each subsequent ordinary multivariate

polynomial function orthogonai to the preceding

orthogonal function(s), define the f,h orthogonal

function pj as:

j-I

PJ=_J--EYkJPk j=2 ..... n (14)
k=l

where 4i is the jth ordinary multivariate polynomial

vector, and the Ykj are scalars determined from

p_'¢j k = 1,2 ..... j -1

Yk; - pT[ Pk j = 2 ..... n
(15)

where n is the total number of ordinary multivariate

polynomials used as raw material for generating the

multivariate orthogonal functions. Eq. (15) results

from multiplying both sides of Eq. (13) by p[,

invoking the mutual orthogonality of Pk, k = 1..... j,

and solving for Ykj. It can be seen from

Eqs. (13)-(15) that each orthogonal function can be

expressed in terms of ordinary polynomial functions. If

the pj vectors and the Cj vectors are arranged as

columns of matrices P and ---, respectively, and the

y,j are elements in the k th row and f,h column of an

upper triangular matrix G with ones on the diagonal,
then

--=PG (16)

which leads to

P = __G -1 (17)

The columns of G -1 contain the coefficients for

expansion of each column of P (i.e., each multivariate

orthogonal function) in terms of the ordinar 3'
polynomial functions contained in the columns of --.

Eq. (17) can be used to express each multivariate

orthogonal function in terms of ordinary multivariate

polynomials.

The orthogonal functions are generated in a

manner that allows them to be decomposed without
_lbiguity into an expansion of ordinary multivariate

polynomials. The orthogonalization process can be

repeated using arbitrary ordinal, multivariate

polynomials to generate orthogonal functions of

arbitrary order in the independent variables, subject
only to limitations related to the information contained

in the data. For the FASER wind tunnel data response

surface modeling, the orthogonal modeling functions
were generated in the manner described above.

If an additional independent variable is introduced

to represent blocking in the experiment, the orthogonal

function modeling can be used to orthogonalize the

block effects with respect to the other independent

w_iable effects. A blocking variable is typically used

to indicate some change in the experimental conditions

that cannot be controlled by the experimenter. The

blocking variable to the first power can simply be made

one of the ordinary polynomial vectors el. The

orthogonalization procedure in Eqs. (13)-(15) makes

the blocking variable orthogonal to the other

orthogonal modeling functions, which are generated

from ordinary multivariate polynomial functions. This

approach allows arbitrary blocking of the data points in

the experiment using analytical means alone.

Normally, experiment designers try to arrange the

normalized settings of the independent variables so that

the blocking variable is orthogonal to the other

independent variables and their polynomial

combinations. This separates the block effect from the
oiher model terms and allows identification of a block

effect independent of the other terms in the model.

However, with the analytical orthogonal blocking

described above, the blocking variable is made

orthogonal to the other modeling functions analytically,

so that arranging the experiment so that independent

variable settings and their polynomial combinations are

orthogonal to the blocking variable is not necessary.
All the models identified in this work included an

awmlytic blocking variable that accounted for drift in

7
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experimental conditions between the time when the

central composite design points were collected and the

time when the D-optimal design points were collected.

With the modeling functions orthogonal, using

Eqs. (4) and (12) in Eq. (7), the j_ element of the

estimated parameter vector _i is given by

+=(,;.)/i,;,'.) (18)

Combining Eqs. (4), (6), and ( 11 )-(12),

j= yT),__ .7

)=1

(19)

or, using Eq. (18),

)
T , " T=/,-,.., p,> p+p+

j=l

(20)

Eq. (20) shows that when the modeling functions

are orthogonal, the reduction in the estimated cost

resulting from including the term aj pj in the model

depends only the dependent variable data y and the

added orthogonal modeling function pj. This

decouples the least squares modeling problem, and

makes it possible to evaluate each orthogonal modeling

function in terms of its ability to reduce the least

squares model fit to the data, regardless of which other

orthogonai modeling functions are present in the

model. When the modeling functions p; are instead

polynomials in the independent variables (or any other

non-orthogonal function set), the least squares problem

is not decoupled, and iterative analysis is required to

find the subset of modeling functions for an adequate
model structure.

The orthogonal modeling functions to be included

in the model are chosen to minimize predicted squared

error PSE, defined by 9

ese=(y-ea) (y- ea) +2O- L
N N

(21)

or

PSE = + 2 o-_,a_--
N N

(22)

where o-2,a., is the maximum variance of elements in

the error vector tr, assuming the correct model

structure, and n is the number of model terms. The

PSE in Eq. (22) depends on the mean squared fit error

J/N, and a term proportional to the number of terms

in the model, n. The latter term prevents over-fitting

the data with too many model terms, which is

detrimental to model prediction accuracy 9. The factor

of 2 in the model over-fit penalty term accounts for the

fact that the PSE is being used when the model

structure is not correct, i.e., during the model structure

determination stage. Ref. [9] contains further justifying

statistical arguments and analysis for the form of PSE

in Eqs. (21)-(22). Note that while the mean squared fit

error J/N must decrease with the addition of each

orthogonal modeling function to the model (by Eq. (19)

or (20)), the over-fit penalty term o-2m,u n/N increases

with each added model term (n increases). Introducing
the orthogonal modeling functions into the model in

order of most effective to least effective in reducing the

mean squared fit error (quantified by h_(pTs pj) for

the fh orthogonal modeling function) means that the

PSE metric will always have a single global minimum

value. Figure 10 depicts this graphically, using actual

modeling results from Ref. [2]. Ref. [9] contains

details on the statistical properties of the PSE metric,

including justification for its use in modeling problems.

For wind tunnel testing, repeated runs at the same

test conditions are often available. If o-_ is the output

variance estimated from measurements of the output for

repeated runs at the same test conditions, then o-2,a_

can be estimated as

"_ 2
o-,7,,ax'-- 25 o-o (23)

If the output errors were Gaussian, Eq. (23) would

correspond to conservatively placing the maximum
output variance at 25 times the estimated value

(corresponding to a 5o-0 maximum deviation).

However, the estimate of o-o2 may not be very good,

because of relatively few repeated runs available or

errors in the independent variable settings or drift errors

when duplicating test conditions for the repeat runs.

The 5o-o value was found to give the most accurate

models in model identification algorithm testing done
using simulated data. In Ref. [2], the model structure

8
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determined using PSE was found to be virtually the
2

same for o',;,cL_in the range:

< _ 29 o',2 _ cr,_,ax -<100 tyo (24)

This happens because the plot of mean square fit

error versus added orthogonal modeling functions is

typically very fiat in the region of minimum PSE, see

Figure 10.

Using orthogonal functions to model the response

variable made it possible to evaluate the merit of

including each modeling function individually as part

of the model, using the predicted squared error PSE.

Since the goal is to select a model structure with

minimum PSE, and the PSE always has a single global

minimum for orthogonal modeling functions, the model
structure determination was a well-defined and

straightforward process that could be (and was)
automated.

After the orthogonal modeling functions that

minimized PSE were selected, each retained orthogonai

function was expanded into an ordinary polynomial

expression, and common terms in the ordinary

polynomials were combined using double precision

arithmetic to arrive finally at a multivariate model using

only ordinary polynomials in the independent variables.

Ordinary polynomial terms that contributed less than

0.1 percent of the final model root-mean-square

magnitude were dropped.

Orthogonal modeling functions are useful in

determining the model structures for the response

variables using the PSE metric, by virtue of the

properties of orthogonal modeling functions and the

resultant decoupling of the associated least squares

problem. The subsequent decomposition of the

retained orthogonal functions is done to express the

results in physically meaningful terms and to allow

analytic differentiation for partial derivatives of the

response variable with respect to the independent
variables.

Results

Figures I1, 12, and 13 show results for the

response surface model fits to measured lift, drag, and

pilching moment coefficient data obtained by applying

the multivariate orthogonal function nonlinear

mc_deling technique to experimental data from

longitudinal subspace 16 for the FASER wind tunnel

test. The crosses shown in the top plot of the figures

arc measured data, and the circles are values computed

fr_m the identified response surface models. Values

fo:" cr_ were found from twelve repeated runs at the

normalized center point of the independent variable

ranges, using the method described above. Model

structure determination and parameter estimation were

done automatically using the orthogonal function

modeling technique. The orthogonal function modeling

software allows manual override by the analyst in the

model structure determination stage, but this option was

not used for the results presented here. All data

analysis and modeling was done on a 1.2 GHz personal

computer running MATLAB ® 6.5. The orthogonal

modeling technique described above was implemented
as an m-file function.

The model residuals shown in the middle plot of
Figures I 1. 12, and 13 show a random character with

magnitudes on the order of the noise level estimated

from repeated runs. The dashed lines in the middle and

lower plots in the figures represent +_or0 , the square

root of the estimated output variance, computed from

repeated runs at the subspace center point. The lower

plots in the figures show that the prediction residual

magnitudes are also within the estimated noise levels

for the output responses. Results shown for this

subspace were typical.

Table 5 contains the identified model structures

for C_, C z, and C,,, for this inference subspace.

Based on the data, the identification algorithm

determined that no sideslip angle dependence was

nceded for the longitudinal coefficients models in

subspace 16, so the final models did not include

sideslip angle.

The results shown in Figures 11, 12. and 13 and

the associated analysis of residuals indicated that the

filnctional dependencies were accurately captured by

the response surface models identified using the

experiment design and modeling techniques described.

Similar results were generated for the other longitudinal

and lateral/directional subspaces listed in Tables 3 and

4 and depicted in Figures 6.7. and 8.
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Figure 14 shows a screen capture of a 3D plotting

tool developed to inspect the response surface fits to

measured data. The symbols represent the measured
data points, and the smooth surface is the identified

response surface. The viewpoint for the 3D plot can be
rotated and zoomed in or out, under the control of the

analyst, and the two independent variables for the 3D

plotting can be selected from the complete set of

independent variables. This tool gives a good overview

of the response surface topology, using 3D slices

through the inference space.

Concluding Remarks

This paper describes and demonstrates an efficient

and effective approach to developing a wind tunnel

database for a research model airplane. The use of

OFAT sweeps for subspace definition proved useful in

def'ming subspace boundaries and as trial runs to

identify and resolve problems related to experimental
procedure, data collection, and instrumentation. The

use of multivariate orthogonal modeling functions

simplified the model structure determination problem

and allowed arbitrary orthogonal blocking. The quality

of the modeling and prediction results from the

experiment design and modeling approach described
and used were excellent. However, because the wind

tunnel was not set up for MDOE experimentation, the

overall efficiency of the testing was not what it could
have been.

Significant efficiency improvement would accrue

if the data could be transferred to a computer for

analysis in real time, and if the wind tunnel rig could be

set automatically to arbitrary angles of attack and

sideslip angles. In this case, the modeling software

could automatically determine the model structure and

parameter values in real time as each data point is

taken, then compute model fit metrics and make 3D

plots. The augmentation of the MDOE experiment

designs for higher order model fits, or the re-definition
of subspace boundaries could be automated as well,

resulting in a testing operation where the human analyst

would be needed only to provide high-level oversight
of the entire operation.
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Table 1 FASER Wind Tunnel Experiment Procedures

Procedure Description

1 Power sweep with wind off for

static thrust modeling

2 Angle of attack sweeps at min, max, and
zero elevator, for static stability and trim

3 Angle of attack, sideslip angle, and power
sweeps for inference subspace

identification

4 2nd order central composite design and

3rd order D-optimal design for inference

subspace modeling

Table 2 Independent Variable Ranges

Variable a fl pwr 8e 8a 8 r 8f

Min -7.5 -30 0 -25 -25 -30 0

Max 80 30 100 25 25 30 30

Units deg deg % deg deg deg deg

Table 3 Longitudinal Inference Subspaces

Inference Angle of Power Sideslip

Subspace Attack Level Angle (deg)

(deg) (percent)

min max min max min max

13 -7.5 10 0 0 -10 10

23 -7.5 10 0 100 -10 10

6 -7.5 10 0 0 10 30

15 10 20 0 0 -10 10

17 10 20 0 0 10 30

24 10 20 0 100 -10 10

16 20 40 0 0 -10 10

18 20 40 0 0 10 30

5 40 80 0 0 -10 10

4 40 80 0 0 10 30

Table 4 Lateral/Directional Inference Subspaces

Inference Angle of Power Sideslip

Subspace Attack Level Angle (deg)
(deg) (percent)

min max min max mm max

7 -7.5 10 0 0 -10 10

8 -7.5 10 0 0 10 30

26 -7.5 10 0 0 -30 -10

19 10 20 0 0 -10 10

20 20 40 0 0 -10 10

21 10 20 0 0 10 30

22 20 40 0 0 10 30

11 40 80 0 0 -10 10

10 40 80 0 0 10 30

Table 5 Longitudinal Subspace Identified Model

Inference

Subspace

16

Model Structure

C D = a0 + ala 2 + a20t8 e + a38 f

C L = b0 +blae +b2_Sf +b3otcSe +b4 a'2

+ bsa6 _

C m = cO+ c18e + c2a'2 + c3_ f + c4£_¢_ e

+ c5a82 + c6ot
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